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We consider the QCD sum rules approach for A-isobar magnetic form factor in the
infrared region 0 < Q° < 1GeV2. The QCD sum rules in external variable field are
used. The obtained form factor is in agreement with quark model predictions for the
A-isobar magnetic momenis.



I. INTRODUCTION

The QCD sum rule method suggested by Shifman, Vainshtein and Zakharov
(SVZ) in the pioneering paper [1] becomes now a universal tool for calculating
different properties of low-lying hadronic states. Using the original version of
this method, the meson [1] and baryon [2] masses were found from the sum rules
for two-point correlation functions. Using the three-point correlation functions,
hadron form factors at intermediate Q? can be obtained [3]. Unfortunately, this
method does not work if one tries to calculate form factors in the infrared region
0 < @? < 1GeV? due to power corrections 1/Q% at @ = 0. The new method
- QCD sum rules in external field was suggested in [4], and using this method
nucleon magnetic moments were found [5] as well as baryon axial couplings [6].
Then this method was formulated for a variable external field [7} which gives a
possibility to calculate form factors at Q? # 0.

In [7] we have formulated a new method for calcnlating hadronic form factors
in the infrared region. To study a form factor at nonzero @2, it is necessary to
introduce a variable external field. The calculation of a polarization operator
in this field encounters a number of difficulties as compared with the case of a
constant external field. The arising problems and methodsa to avoid them were
discussed in detail in the paper [7].

Let us note that in the papers [8] and [9], the pion and nucleon charge radii
were considered, using the methods similar to ours. However, the results obtained
in [8] are connected not with the calculation of the total form factor F(Q?), but
only the first derivative at zero momentum transfer < r? >~ F'(Q?)|g=o- In
[9] pion form factor was considered. The aim of the paper is to use the general
method for calculating A-isobar magnetic form factor in the infrared region.

IL POLARIZATION OPERATOR IN VARIABLE EXTERNAL FIELD

To compute A-isobar magnetic form factor we shall consider the following
correlator in an external variable electromagnetic field:
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where
l]:,(p, k)= ije"’d"z < T{nu(z), 7.(0)} >v (2.2)
Mul(2) = (I Cr, ) (2.3)

is the quark current with the A-isobar quantum numbers suggested in the first
paper in Ref.[2], u is the u-quark operator; a , b and c are the color indeces, €** is
the antisymmetric tensor and C = —C7T is the charge conjugation matrix; index
V means the vacuum average in the presence of weak external electromagnetic
field that is responsible for adding to Lagrangian of the following term

AL = =Vue™ ) erdy(@yruar(z) = —Vujulz)e™* 24)
!

where e; is the charge of the quark with flavor f, V, and k, are the amplitude
and the momentum of the classical external field. This correlator was suggested
in [7].

Now let us discuss the reason why we need to introduce the §-function in
the correlator {2.1). To calculate the correlator (2.2) at p? ~ —1GeV?, (p +
g)? ~ —1GeV?, kE* = —Q* < 0) we use operator product expansion in the
presence of external variable field (2.4). So we need to know nonperturbative
quark propagator in the field

<: T{g3(=), 44(0)} :>v (2.5)

=< T{gl(2), ¢4(0)} >v — < T{qi(z), g}(0)} >{¥°*)

Where :: denotes a subtraction of perturbative contribution. It is possible
te find perturbative part of this propagator in the form of expansion over the
coupling constant. To take into account nonperturbative interaction of the quark
with the external field, we expand eq.(2.5) over z,,

<: T{ga(=), g5(0)} :>v =<: ¢2(0), 45(0) :>v (2.6)

1
+z, < D,.q,‘,',((}),qg(o) >y g Euty < D, D,q3(0),95(0) :>v +...

It is clear that the n’th term of expansion (2.6) can give dimensionless factor
(kz)". Effectively it means that highest terms contribution of expansion (2.6)



into a polarization operator (2.2) is not suppressed because this factor (kz)™
corresponds to the factor (kp)/p® ~ 1. To kill the dangerous contributions of the
terms ~ (kz)" we insert §(kz) into the correlator (2.1). This correlator (2.1) can
be calculated in a form of series over 1/p®. Therefore at respectively large —p?
this correlator can be calculated with a good accuracy using only the first few
terms in expansion (2.6).

The nonperturbative quark propagator in the external field has the following
form:
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200 + S (o daphls <: 99 >0 ~DF ()
k2
—i§ (k?) + 3ik?Ma(k?) - - Ha(k?)]

+ (terms with an odd number of v — matrices)} + O(z?)

The correlators II;{k?) are defined as follows:

ew Iy (k) (K2gus — kuky) =

i/e“""d’z < T{E dr1ugs(z), iy, u(0)} >0
!

euﬂl(kz)(‘-’ugw —kugup) = (2.8)
ij etrdtz < T{E 4179y (z), o u(0)} >0
f

ealla(E*)(k* (gupks + 0upky) — 2k,k,E,) =

i / e*ediz < T(Y " e;457,01(2). i DguDy) u(0)} >0
s

€y ]]4(1:2)kl,‘.l-.,,(g‘,,,.k,J — gopke}+ ... =

i/e"“d‘z <: T{Z erd17p9s(2), iop, Dy, Dyy u(0}} :>0
I

eullf(k?‘)(kygw ~kygpu) =

i]-e""’d"z < T erdrro9s (), 925G, " u(0)} >0
1

euﬂf(k:’)(k,,gp., ~kugp.) =

i/c“‘d"r < T{Z e;tj;-ypq;(z),g.ﬁé:,t"75u(0)} >g
J

Perturbative contributions are subtracted in correlators (2.8). These expressions
were obtained in [7].

In this paper we neglect operators HH%(k?) because their contribution into a
sum rule is small (see [7]).

III. THE SUM RULES

In this Section, we obtain a sum rule for the A-isobar magnetic form factor.
First, we should choose a tensor structure which has a contribution from the
maguetic transition between baryon states with quantum numbers J = 3/2. To
this end, we consider the contribution of two baryons with masses m; and m,
into the polarization operator IIV (p, k) (2.2)

VP<0|'?MIA1 ><A1|j;m IAQ)(Azlﬁy'())
(p* — mi){(p + k) — m}) '

(3.1)



where A, and Aj are baryon states with masses m; and mj respectively. Here
we congider the case when only spinor parts of the Rarita-Shwinger fields interact
with a photon. In such case, the matrix element of the electromagnetic current
has the following form:

<N g™ | Ny >=
B Dgu a6, + X apakr + iz (B0 (p + k) =

my4ma
8 (2)9uw [(F12() + 012 (k)7 + P, 225D 4 g 12k, 1D (p+ k) (3.2)
< 0|9, | N, JP =3/2% >= v, (p)
Pu=pu+(p+E),,

where v, (p) is a Rarita-Shwinger spin-vector satisfying the Dirac equation: (p—

m)ﬂl‘(p) = 0! Yulp = 0) Pplu = 0.
Using (3.2) we can transform (3.1) to the following form:

A1da L
7= (o + B — ) PP b2 Ou ()3 ¢3)

+(other structures with v, placed at the beginning and v, at the end of them))

where Gy 18 the magnetic form factor.
It is important to note that there is no spin-1/2 baryon contribution in the
structure g,,p17,p2 which has the following amplitude:

<0|n, | J=1/2>=(Apu + By,)u(p)

where (5 — m)u(p) = 0 and Am +4B = 0.

From (3.3), it is obvious that the structure gy, p1v,p2 (where p1 = p and
P2 = p+ k) contains magnetic transition only, since G}3/3 = f12(k?) + p12(k?),
where G1? is the magnetic form factor. So, we shall further consider only the
structure g,,p,7,p>.

Now let us discuss the facior 1/3 which have appeared in eq.(3.3}). Consider
interaction of spin-3/2 particle with the electromagnetic field:

a(iﬂ(Pl)g#l'(Pl + Pﬂ)pwv(Pz) + ibip(am\ynvlz + 2y#pyvh)qupA (3-4)

where 10,0 = [v,m2], ¥, is Rarita-Shwinger spin-vector field { (P — m) =
0,7.%, = 0), For = 8,Ax — 9rA,. The first term of eq.{3.4) corresponds
to the spin-independent part of electromagnetic interaction of %-spin particle

and the second one describes the spin-dependent interaction. To express the
value of the magnetic moment {at Q*? = 0} let us consider the case when
Ag = 0,Fy = m,F,5 = 8pd5j¢€;j6H, where I} is magnetic fieid. Then we
have

ibim(gmnaijfijk/2 + 2€mnk)q'n He = bim (gmn e+ 2i€mnt)‘]nHk
(3.5)

where X; = diag(o;,a:) Now we see that the operator (Xigmn +2i€¢mni) is equal
to 25; where S5 is spin operator for the Rarita-Shwinger field. So, the maximal
energy of the particle in the magnetic field is equal to

Eip = 3bH = pH, (3.6)

where y, by definition, is magnetic moment or magnetic form factor at Q* = 0.
Thus, we have

u=3b 3.7

Now let us consider the double dispersional relation for the function at tensor
structure g,,p7,p2V,:

_ 1 2 p(s1,82,Q%)
f(P12:P22102)— ';5']0 L (P12+31)(P22+82), (3.8)

where P? = —p?, P2 = —p2, Q% = —k? > 0 and p(s;, 52, Q%) is the spectral den-
sity. Due to reasons mentioned above, we cannot calculate p(py, pa, @?) directly,
but we can consider the double Borel transformed structure function of correlator
(2.1). Notice, that under replacement py — p; + kz, p; — p2 + kz the structure
P1YuP2Vy transforms to

PryvupaVu — (1 + E2)V (B2 + k2) = $1Vpa — 2(Vpr)prz — (3.9)
2(Vpa)pez + (0} + p2)2V + 22(2(VE)E - Vi?)

and all other structures in (3.3) with smaller number of y—matrices near g,,,
could not be transformed into p, Vp, . So we can exiract GuvD1 V p, in the integral
(2.1). Then the integral representation for the double Borel transformed structure
function under consideration is obtained from (3.8) by applying the operator O:

+00
Of(P?, P}) = ] dzBeaBpa [((Py +k2), (P + k2))  (3.10)
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where

s (PO 8"
F=atn o Top

Plin=M?

M? is the Borel parameter.
Applying the operator O to the left-hand and right-hand sides of double dis-
persion relation (3.8) we get

+1/3 Q222

103, =5 [ exw( ) x

+s
/ f dsydsg exp(— 12M’2 (

where M} = M3 = 2M2.

We shall use the sum rules (3.11) to calculate the nucleon form factor. The
function f(M?,Q?) is calculated using operator expansion in the external field,
and the spectral density p(s;,s2, Q?) is saturated by intermediate states with
quanium numbers of the current {2.3).

There are two different types of intermediate state contributions into (3.11).
The first is responsibie for the diagonal transitions between the states with equal
masses. The second is responsible for nondiagonal transitions between the states
with different masses. In the first case the right-hand side of (3.11) obviously has
the form

) @) (@1)

2 [TV2 gaa
A’GT“(Q’)e""”" SH ds (3.12)
-1/2

where A? is the square of the residue of the state with mass m into thke current
1) defined by formula (3.2), G (Q?) is the corresponding magnetic form factor.
anmnmmd amnan o

In the second case u.;f the transition between states with masses L and ing

we get:

12) migm? 12 QA T4 (mI-md)
Al)«zg(’%‘_'(qg)e _:E’z/ et d; (3.13)
1/2

Now, to investigate the properties of (3.12) and (3.13) let us expand them in the
series on Q? /M2

12 M2 25

AzGM(Q) —m’/M’(l_I_ Qz ( ) + .. ) (314)

B1BaGLHQ%)e T —zsmh( ) (3.15)
my

2M2

Q.1 M? 204
14+ —f-— coth + + ...
{ M2[4 mi —m ( 2M2 ) (m f—m%)’] }

From (3.14) and (3.15) we see that diagonal transitions of the excited states are
exponentiaily suppressed compared to the A-isobar contribution in (3.14). Let us
write the non-suppressed part of the contribution from the nondiagonal transition
between the nucleon with mass my and an excited state with mass ma.

4A7(QY) e A
M- M v AL
Q_ﬂl M2 2 2 2M4
2[4 g coth 2M3 Ay 4 L _mi)2]+...} (3.16)

where ma, ma«, A and Aa. are masses and residues of A-isobar and its resonance
A* respectively.

Expression (3.16) is analogous to the contribution from the single-pole term
appearing in QCD sum rules for correlators in constant external field (see [4]).

It is easy to see that the function multiplied by Q?/M? in (3.16) changes from
1/12 at m§ — mi — 0 to 1/4 at m3 — m4 — co. However, taking into account
the continuum, only contributions from the states with m3 — m2 ~ g9 — m3
(80 is the continuum threshold) are to be considered. In the region s 3 sg, our
model of continuum is quite correct, but when s ~ g it is not so. Then we see,
that nonexponentially suppressed terms will be determined by the states with
m3 ~ 8o. Taking m} — ml ~ s — m} ~ 1.5GeV?, M? ~ 1GeV?, expression
(3.16) can be written in the form

Aoda G“A'(Qz) e —%Mz( N Qz
T3 mi.-md 12M2

{(i+ej+...) (3.17)

where € < 0.1.
Thus, from (3.14) and (3.17) it is seen that when Q2/M? < 1, and M2 ~
1GeV?, the right-hand side of (3.11) is

1 3 +1/2 3
§,\f,e-"'n/"”(GM(Q?) + C(Q*)M?) e dz (3.18)
~1/2



The accuracy of (3.18) is of an order of a few percents (it depends on the nu-
merical value of ¢ from (3.17)). It can be shown, that the next terms in the
expansion (3.15) in powers of Q?/M? do not change the situation. So, in the
region Q2/M? < 1, M? ~ 1GeV?, the right side of the sum rule (3.11) is indeed
represented by expression {3.18).

Let us note that when Q?/M? > 1, the expression (3.18) is invalid and we
cannot separate the contribution of the single-pale terms from the contribution
of the us double-pole term ~ G (@?) which we are interested in. Thus, our sum
rule is expected to be valid in the region 0 < Q? < 1GeV?2.

Here we have constructed the right-hand ” phenomenological” side of the sum
rule (3.11) and discussed the region of its applicability. Now, let us pass to the
calculation of the left, ” theoretical® part of our sum rule.

Using eq.(2.7) and dispersion integral (3.11) we have obtained the foliowing
sum rule for Gyy:

1/1 S0 Ll
./+ I 802"’“’&./ dsl_/ dsze‘%?’f’”.f?——_ﬂ“(s"”’oz)
0 0

-1/2 x?

+1/2 .
-l-ga2 dze@ 2 IM* (3.19)
3 S

s

+3 (2 a(Ix(@ )M e - 2020+ @ in(@)ed

n / 2,2
—(2")22:;111(02)8‘ = I(M*,80,Q") fﬂ 2 e dz
1/2
- 12 g2,
=X el (3 GM(Q=)+C(Q=)M2 e d:

where e, = +3 and pa(s1, 82, Q%) is a spectral density:

35”“(31’82.0’)"0’(‘26 3) ( (2« +U)+Q’(1+__U(2"_+U)))

where £ = /(51 + 82+ Q%) — 48182, U = 81 + 52+ @7, a = (2x)? |< Py >o|=
0.55GeV3, Ay = (21)2Aa = 2.3GeVS, 55 = 4GeV?, ma = 1.232GeV,
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Q2+06 Qr+26

(@) =~ < ¥ >0 )i6ev)

Here Q? is in units of GeV2,

2m32(2n7)?
III(Q2) (2,“,)2 ( (Qg( )

+In(1 4+
7y +ind Q“)
2
where 52 = 2.3 is residue of the p~meson, m2 = 0.6GeV? is the p—meson mass

squared, and sj = 1.5GeV?. Numerically in GeV units we have

1.5
]]1(02) = (2 B (_QZ 106 +In{1 + 02 ))

114(Q%) = 31(Q7)

All these expressions for operators II;(Q?) were obtained in [7]. In (3.19 s, =
4 GeV? is continuum threshold, which is numerically equal to the threshold of
continuum in the sum rules for A-isobar mass. Such a choice for the value of
the threshold follows from the assumption that there is one and the same value
of threshold for different structures in the sum rules. Then, considering the
sum rules for the electric charge (i.e. for the electric form factor Gg(Q?) = 1,
Q? = 0) it can be shown that they coincide with the mass sum rules except for
the possibly different values of thresholds. But from Ward identity, we know that
these sum rules should coincide exactly. So the value of the threshold in the sum
rules is 89 ~ 4GeV? [2]. This assumption is based on the physical meaning of
the quantity so, which as we know from the experience is determined mainly by
the position of the next resonance in corresponding channel. And it would be
very surprising if the resonance contribution to the electric form factor’s channel
strongly differs from the contribution to the magnetic form factor’s channel.
In the limit s — oo

;!-5‘[0 dslfo d«'§2m;(.~31,52,Qz)e_Lnl:Tt’:'z""nnf!l"1 (3.20)
QZ
= ey M°® (ﬂEg(m-.;,(l —42%)) — 3E3(fracQ®AM*(1 — 42%)) + Es( 1 Mz(l - 4:’)))

r e .

Here E(z) = flm
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Now, let us discuss the continuum contribution into the second term of the
left side of (3.19). The double discontinuity of the corresponding diagram could
not be ealculated due to the reasons discussed in the Section 2 of this paper.
We do not know the exact formula, analogous to the first term in (3.19), but
can write an approximate expression, which becomes exact in the limit when
M? — co. Moreover, if one substitutes the first term in the left side of (3.19) by
the analogous term

euM“(l—e-'°f"’(1+ 20 )eQ M (3.21)

2M4)

+1/2
f_ s dz[2Eg( 2(1—4:’)) 3E5( 4M2(1 ~421)) + Ex(—~— 4M2(1—4z’))]

then one sees that their differences is less then 10% in the region Q? < 1GeV?3.
So, since we shall work in such a region of M2, where the continuum contribution
is less then 20 — 30%, then the uncertainties due to the second term in (3.19) will
be less then a few percents.

To find G (Q?) we should study the following formula to kill nonsuppressed
contribution of the nondiagonal transitions

Cu(Q*) = 3eu(l - 2ema/M (M2, S0, @)

M M) A
at any fixed Q.

The results cbtained for the form factor are depicted in Fig.1. Notice that
contribution of nondiagonal transitions is very small (about few percents) in the
sum rule. In the region 0 < Q? < 0.8GeV? the result obtained may be fitted by
the following relation

Gu(Q) =

6.16 eh
T (ame) (3.2
where u? = 0.7 GeV?3.

The additive quark model prediction is Gp(0) = 2m -

The analogous sum rule could be also writien in the case of £} -hyperon in
the limit of SU/(3) symmetry after evident interchange e, + ¢,. The accuracy of
the results obtained is about 10 — 20%.
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IV. CONCLUSIONS

In the present paper the QCD sum rules for the polarization operator in a
variable external field are used to calculate the A-isobar magnetic form factor
in the infra-red 0 < Q2 < 1GeV? region. Analogous sum rules can be used for
calculatjon of other diagonal hadronic form factors in the infra-red region. Notice
that this method does not wotk in the case of nondiagonal form factors because it
is not possible to separate interesting contribution into correlator. There is only
one way to do it: to sum all {kz)"-terms in the expression for nonperturbative
propagator (2.6). It was done ooly in the case Q% = 0 [12] using operator product
expansion on a light cone and models for the photon wave functions.
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Figures

Q* (GeV?)

Fig.1

Deita-isobar magnetic form factor.
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